

Science Team for Ames Airborne Tracking Sunphotometer (AATS-14) in SOLVE II:

Phil Russell¹, Pl
John Livingston², Beat Schmid³, and Jens Redemann³, Co-Is
Jim Eilers¹, Engineer
Ric Kolyer¹, Technician
Stephanie Ramirez³, Programmer/Analyst

¹NASA Ames Research Center, Moffett Field, CA
²SRI International, Menlo Park, CA
³Bay Area Environmental Research Institute, Sonoma, CA

SOLVE II Pre-Mission Science Team Meeting
Dryden Flight Research Center, Edwards, CA, December 11, 2002

Ames Airborne Tracking Sunphotometers (AATS) And How They Are Used

- <u>SOLVE II Proposal: Provide measurements to validate SAGE</u>
 <u>III</u>
 - Aerosol & PSC Optical Depth Spectra (380-1558 nm)
 - Ozone Column
 - Water Vapor Column
 - Vertical Profiles of Above When DC-8 Flies Profiles
- **SOSST Proposal**:
 - In-depth validation studies using SOLVE-2 data
- Derive aerosol and PSC particle size distributions, surface areas and volumes, for use in studies of the heterogeneous chemical processes that control ozone concentrations
 - Radiative effects of PSCs and other aerosols

- (A) DC-8 altitude, tropopause altitude, and thickness of Pinatubo volcanic aerosol layer measured by DC-8 lidar.
- (B) Aerosol column mass (μ g cm⁻²), column surface area (μ m² cm⁻² I 10⁷) and particle effective radius (μ m), all determined from DC-8 sunphotometer optical depth spectra.
- (C) Particle sulfuric acid concentration W (% by weight), temperature (K) vertical average above the aircraft, and time (h) spent on trajectories with W<60%. Error bars denote extreme values over the altitude region of the volcanic aerosol layer (Toon et al., *Science*, 1993).

• <u>SOLVE II Proposal: Provide measurements to validate SAGE</u>

- Aerosol & PSC Optical Depth Spectra (380-1558 nm)
- Ozone Column
- Water Vapor Column
- Vertical Profiles of Above When DC-8 Flies Profiles

• **SOSST Proposal**:

- In-depth validation studies using SOLVE-2 data
- Derive aerosol and PSC particle size distributions, surface areas and volumes, for use in studies of the heterogeneous chemical processes that control ozone concentrations
 - Radiative effects of PSCs and other aerosols

(a,b) Model profiles of stratospheric and tropospheric aerosol extinction and optical depth based on SAGE II and AATS-14 measurements.

(c) Profile of a simulated flight at 68N, 20E on January 25, 2003 with corresponding airmass values for Rayleigh, ozone, aerosol, water vapor, and NO₂.

(d) Simulated measurements of optical depth spectra (dashed lines and symbols with error bars) with the model spectra (solid lines) used to compute them.

Measurement simulation analogous to previous, but for a POAM-measured PSC with τ (500 nm)=0.02.

P. Russell, SOLVE II Science Team Meeting, NASA Dryden, 11 December 2002

1/2/2003 11:19:22 AM **11**

- <u>SOLVE II Proposal: Provide measurements to validate SAGE</u>
 - Aerosol & PSC Optical Depth Spectra (380-1558 nm)
 - Ozone Column
 - Water Vapor Column
 - Vertical Profiles of Above When DC-8 Flies Profiles
- **SOSST Proposal**:
 - In-depth validation studies using SOLVE-2 data
- Derive aerosol and PSC particle size distributions, surface areas and volumes, for use in studies of the heterogeneous chemical processes that control ozone concentrations
 - Radiative effects of PSCs and other aerosols

- <u>SOLVE II Proposal: Provide measurements to validate SAGE</u>
 <u>III</u>
 - Aerosol & PSC Optical Depth Spectra (380-1558 nm)
 - Ozone Column
 - Water Vapor Column
 - Vertical Profiles of Above When DC-8 Flies Profiles
- **SOSST Proposal**:
 - In-depth validation studies using SOLVE-2 data
- Derive aerosol and PSC particle size distributions, surface areas and volumes, for use in studies of the heterogeneous chemical processes that control ozone concentrations
 - Radiative effects of PSCs and other aerosols

Issues

- Getting sufficient opportunities to view the sun during
 - conditions relevant to SOLVE II science goals
 - Recommendation: For all proposed flight plans,
- plot sun
 - elevation and azimuth, absolute and relative to
- **DC-8** heading
- <u>Viewing along SAGE III view path during SAGE III</u> occultations:
 - Recommendation: Strong role for SAGE IN The Pecember 2002

Talk Content:† The talks should be about the expected science rather than the details of your particular instrument. The talks should be 12 minutes, with about 2 minutes allocated for a couple of questions.†† Talks should probably have no more than 10 vugraphs (time is tight).† The talks should contain:

- 1) A listing of your Science Team (on the introductory VG)
- 2) A basic illustration of your instrument or activity (no more that 3 VGs)

4) What sort of measurements do you expect, and what sort of science do you expect to do with your own data and the overall SOLVE II data set?

Meeting Issues:

- 1) What major issues do you have for the project or flight operations?
- 2) Are there other science goals that we need to think about?

AATS-14 on UW CV-580 in SAFARI 2000

